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Abstract
Formation of neutron energy bands in PdH (D) crystal originated in excited

states of neutrons in Pd lattice nuclei (nuclei on the lattice points) is formulated
using data in nuclear physics and in solid state physics. Neutron bands below the
zero energy (neutron valence bands) are formed by the super-nuclear interaction
between nuclei (the interaction between excited neutrons in lattice nuclei) medi-
ated by occluded hydrogen isotopes. Neutrons in the bands show local coherence
in boundary regions and form neutron drops (clusters of neutrons with a few pro-
tons and electrons) there in the sample. The neutron valence bands and neutron
drops explain characteristics of nuclear reactions in solids including the so-called
cold fusion phenomenon (CFP) different from those of nuclear reactions in the iso-
lated nucleus studied extensively in nuclear physics. Possible applications of the
anomalous nuclear reactions in solids are discussed.

1. Introduction
The nuclear structure of isolated nuclei in the energy region up to several hun-

dred MeV has been thoroughly investigated in about ninety years to accomplish its
fundamental understanding in the energy region up to several hundred MeV1,2) after
the discovery of the atomic nucleus in 1911. The global features of the energy levels
of nucleons and their distribution seem to be fairly well described by the Fermi-gas
model,1) despite a fact ”various experiments utilizing high-energy incident particles
have attempted to explore this distribution but the results, so far, have been mainly
confined to light nuclei, and a quantitative analysis is plagued with difficulties in
the description of the reaction mechanism.” (Ref.(1) Sec. 2-1c) It is true even now
especially for excited levels with energies very close to the zero level; which corre-
sponds to the neutron level with a binding energy of zero in the nucleus A

ZX, or to
the state where a neutron and the separated nucleus A−1

Z X remain still. (We use this
energy standard in this paper unless otherwise stated.) Therefore, it is interesting
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Japan. E-mail: cf-lab.kozima@nifty.ne.jp
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to have some phenomena which are directly related with the highest excited levels
of nucleons in medium and heavy nuclei.

In the Fermi-gas model, excited levels of nucleons and the total level density
in a nucleus are fairly extensively investigated1) for an isolated nucleus in a free
state. When a nucleus is in stationary influence of interactions with other particles,
on the other hand, nucleon states in the nucleus may be influenced largely by this
interaction; especially, the positive charge density of external particles makes excited
levels of a proton higher than that of a neutron. This may appear if the nuclei
(lattice nuclei) are at lattice points interacting with hydrogen isotopes at interstices
(occluded hydrogen isotopes) in transition-metal hydrides and deuterides.

In addition to the change of energy levels of nucleons in the nucleus, the effects of
the external particles can cause coupling of a nucleon in a nucleus with another in a
different nucleus, both in interaction with the same external proton or deuteron. In
the case of transition-metal hydrides and deuterides (e.g. PdH (D) that we mainly
treat in this paper), neutrons in excited levels of adjacent lattice nuclei can be
coupled each other through interactions with the same occluded proton (deuteron).3)

This interaction may be called ”the super-nuclear interaction” in analogy with the
super-exchange interaction between the electron spins of metal ions mediated by
spins of oxygen ions in transition-metal oxides, e.g. MnO.

The super-nuclear interaction between neutrons in adjacent lattice nuclei results
in the energy band structure of neutrons described by Bloch waves, which are de-
picted by the tight-binding approximation well known in solid state physics.4) An
opposite limit of the approach to figure out the neutron band structure is the free-
neutron approximation as presented in a previous paper.5)

Interesting features of neutron band structures appear in boundary regions of a
crystal when there are reflecting walls; local coherence of neutron Bloch waves, and
therefore, a high density of neutrons appear there.6) High density neutrons in the
boundary region7) or in neutron star matters8) induce formation of neutron drops (or
clusters of neutrons with a few protons and electrons) in a thin neutron background.

These features of high density neutrons in boundary regions might be partici-
pating in the so-called cold fusion phenomenon (CFP), i.e. more precisely expressed
”nuclear reactions and accompanying events occurring in solids with high densities
of hydrogen isotopes in ambient radiation.”6,9) A model (the trapped neutron cat-
alyzed fusion (TNCF) model) proposed by the present author was successful to give
unified consistent explanation of CFP not only in deuterides but also in hydrides10,11)

and premises assumed in the model have been investigated microscopically using the
neutron band concepts.3)

In this paper, a quantitative verification of treatments given in previous papers3,10,11)

is given on the knowledge of nuclear structures established in nuclear physics. We
use the Fermi-gas model for nuclei throughout this work.

2. Excited States of Neutrons and its Density of States in Medium and
Heavy Nuclei

It is a common knowledge in nuclear physics that average properties of the
excitation spectrum of nucleons in a nucleus are given by the Fermi-gas model as a
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result of dominance of the particle degrees of freedom over the number of collective
modes.1)

In the Fermi-gas model, nucleons in a lattice nucleus at ai is treated as inde-
pendent particles and their quantum states ψ{n}(r−ai) are specified by quantum
numbers {n} ≡ (n, `, m) omitting spin parts for simplicity;12)

ψ{n}(~r − ~ai) ≡ ψnlm(~r − ~ai). (1)

The wave function of a neutron in a nucleus A
ZX, however, extends far away from

the nucleus when the energy E of the state is less than but close to zero and then
the wave function outsides the nucleus is approximated by

ψη,`,m(~r − ~ai) = cie
−η|~r−~ai|Y`,m(θi, φi), (2)

where η ≡ η(|E|) is a damping factor of the radial wave function depending on the
energy but assumed for simplicity to be independent of quantum numbers, and (θi,
φi) are angles measured from the lattice point ai. In the following treatment, we
use the wave function (1) until we need the wave function (2).

The result of the calculation of the total level density for the Fermi gas is given
as;1)

ρ(N,Z, ε) =
61/4

12

g0

(g0ε)5/4
exp{2(

π2

6
g0ε)

1/2} (N ≈ Z), (3)

where ε is the excitation energy measured in relation with the ground state and g0

is the one-particle level density at the Fermi energy εF representing the sum of the
proton and neutron level densities:

g0 ≡ g(εF ) =
3

2

A

εF

, (4)

for a case Z = N = A/2.
The energy range where the above formula is applicable is determined by a

relation
εF

A
¿ ε ¿ εF A1/3, (5)

where εF ' 37 MeV for heavy nuclei. This relation gives an energy range of appli-
cability 0.4 ∼ 170 MeV for nuclei with mass numbers A ∼ 100.

High density of nuclear levels at high excitation energies, amounts of the order 106

times higher than that corresponding to single-particle motion, has been revealed by
densely spaced, sharp resonance in the slow neutron capture reactions in a nucleus
with A ∼ 100.1) The figure 106 will be increased further by several orders when the
energy of the slow neutron capture reactions goes down to ∼ 1 eV. In the following
discussion, we will take this factor as 109 at its maximum suggested by experimental
data for Ag in the range of 2 to 8 MeV13) considering later application to Pd isotopes
in the energy range up to 10 MeV.

This means, in terms of the Fermi-gas model, the compound nucleus corresponds
to very extensive configuration-mixing in the stationary states and resonance. As
a result, configuration-mixing will remove the selection rules associated with single
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configurations. This fact about an isolated nucleus is very important in the inves-
tigation of phenomena related with these excited states in coupled lattice nuclei
treated in the next section.

3. Effective Potential for the Super-nuclear Interaction between Neutrons
in Adjacent Lattice Nuclei of Transition-Metal Hydrides and Deuterides

In the transition-metal hydrides (deuterides), the crystal structure is dependent
on the concentration of hydrogen isotopes which can be introduced continuously
into the crystal until a definite limit and kept stable there (occluded); the critical
composition is PdH (D) in Pd, NiH (D) in Ni, TiH2 (D2) in Ti, and so on.14,15)

The samples of transition-metal hydrides (deuterides), which we are interested in,
are those with near critical compositions and we confine our investigation to crystals
of stoichiometric compounds PdH (D) for our object in the following treatment.
In this compound, hydrogen isotopes occluded in the crystal occupy octahedral
interstices having six Pd atoms as nearest neighbors on the crystallographic axes
half way of the lattice constant. The lattice constant a of the compound PdHx

depends on the composition x and is a little larger than that of Pd crystal 3.89
Å. In the following treatment, however, we ignore the dependence of the lattice
constant on the composition and use the value for Pd crystal as for the compounds
PdHx.

The nuclei of the transition-metal element on the lattice points (lattice nuclei)
have six hydrogen isotope nuclei (protons or deuterons) as nearest neighbors at in-
terstices half lattice constant 1.95 Å apart. The proton (deuteron) at an interstice is
described as a three-dimensional harmonic oscillator in its ground and lower excited
states and is sometimes described by proton (deuteron) Bloch waves in its excited
states.16) The wave function of a proton (deuteron) in a state specified by quan-
tum numbers {p} ≡ (np, `, m) at an interstice bj, ϕ{p}(R−bj), has finite probability
density at nearby lattice nuclei especially when it is in excited states.3) If we ignore
mutual interaction of protons (deuterons) in different interstices, the total proton
(deuteron) wave function may be expressed as a product of wave functions on the
interstices as follows with {pα} = (p1,p2,· · · pZ);

Φ{pα}(~R1, ~R2, · · · ~RZ) =
∏

j

ϕ{pj}(~Rj −~bj). (6)

The overlapping of the proton (deuteron) wave function ϕ{p}(Rj −bj) on the
interstice bj with a nucleon (neutron) wave function ψ{n}(r−ai) of an adjacent
lattice nucleus at ai results in the proton (deuteron)-neutron interaction through
the nuclear force.

The nuclear force is expressed by the gradient of a potential V (r−Rj) whose
form is taken as one of following potentials;

Vsw(~r − ~R) = −V
(s)
0 , (|~r − ~R| < b) (7)

= 0, (|~r − ~R| > b) (Square well)

VG(~r − ~R) = −V
(G)
0 e−|~r−

~R|2/r2
0 , (Gaussian well) (8)
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VY (~r − ~R) = −κ
e−|~r−~R|/r0

|~r − ~R| , (Yukawa well) (9)

where V
(s)
0 ∼ 3.5 MeV, b∼ 2.2 × 10−13 cm, V

(G)
0 ∼ 3.5 MeV, r0 ∼ 1.4 × 10−13 cm

and κ/r0 ∼ 3.5 MeV.17) The choice of a potential from them does not make a large
difference to the result for low energy phenomena12,17) we consider in this paper and
we us Vsw(~r − ~R) hereafter.

This interaction brings two nucleons (neutrons) in lattice nuclei on different lat-
tice points in coupling with each other which we named the super-nuclear interaction
as explained in Introduction. In the following investigation, we concentrate on neu-
trons in lattice nuclei than protons which are in lower levels in the ground state due
to the general rule Z < N and need more energy for excitation to levels around zero.

To investigate properties of the super-nuclear interaction between neutrons in
different nuclei, we use the tight-binding approximation for excited neutrons in lat-
tice nuclei. In a periodic potential of lattice nuclei, a neutron in an excited level of a
lattice nucleus is described quantum mechanically as a linear combination of states
centered at each lattice nucleus with the same probability and its state is expressed
by a Bloch function;

ψ~k(~r) =
∑

i

ei(~k~ai)ψ{n}(~r − ~ai). (10)

Therefore, the total wave function of a system composed of a neutron Bloch wave
and Z protons at interstices is expressed as follows (neglecting spin parts of wave
functions, for simplicity);

Ψ~k,{pα}(~r;
~R1, ~R2, · · · ~RZ) = ψ~k(~r)Φ{pα}(~R1, ~R2, · · · ~RZ), (11)

The description of neutrons by the Bloch functions becomes a good approximation
when the band width finally obtained is wide enough to make the neutrons move
freely in the crystal not disturbed by perturbations causing aperiodicity in the pe-
riodic potential of the lattice nuclei. The origin of the perturbation will be lattice
imperfections (caused by deviation from PdH (D) composition), thermal oscillation
of the lattice nuclei, impurity atoms, and so on.

The neutrons in excited states of lattice nuclei and occluded protons (deuterons)
at interstices could be treated independently because an exchange of the neutron
and the proton results in fairly high-energy states and does not occur with high
probability. The total energy E~k,{pα} of the system with a neutron in a band state

k and protons in states {pα} in this approximation is expressed as follows in the
second-order perturbation calculation taking the square-well potential (7) for the
nuclear potential:

E~k,{pα} = E{n,pα} +
∑

k′,i,i′,j
exp(−i(~k~ai − ~k′~ai′))vnp(ii

′j), (12)

vnp(ii
′j) =

∑

n′,p′

×< np; ij|V |n′p′; ij >< n′p′; i′j|V |np; i′j >

E{n′,p′} − E{n,p}
, (13)
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E{n,pα} = E
(p)
{n} +

∑

j

εpj
, (14)

V (~r) = Vs(~r), (15)

< np; ij|V |n′p′; ij > =
∫ ∫

d~rd ~Rjψ
∗
{n}(~r − ~ai)ϕ

∗
p(~Rj −~bj)

×V (~r − ~Rj)ψ{n′}(~r − ~ai)ϕp′(~Rj −~bj), (16)

where summations over i and i’ are only over the nearest neighbor lattice points
ai and ai′ of the interstice bj, summations over {n′,p′} exclude the term where

the denominator becomes zero, E
(p)
{n} is an energy of a neutron in an excited state

ψ{n}(r−ai) in a lattice nucleus at ai when protons are in states {pα}, and εpj
is an

energy of a proton in a state ϕpj
(Rj −bj) at an interstice bj. The neutron energy

E
(p)
{n} can be approximated by the energy of a neutron in a lattice nucleus interacting

with protons in a state p̄, an average of pi’s because |En| À |εp|. We ignore, however,

p-dependence of E
(p)
{n} hereafter in this work (E

(p)
{n} = E{n}).

For quasi-continuous levels of excited states in a lattice nucleus, we have to
calculate such a following integral excluding a point where the denominator becomes
zero to obtain the effective potential energy vnp(ii’j) (13);

∑

{n′},{p′}6={n},{p}

< np; ij|V |n′p′; ij >< n′p′; i′j|V |np; i′j >

E{n′,p′} − E{n,p}
=

∑

{p′}6={p}

× P
∫ ∞

−∞
dEρn(E)

< np; ij|V |n′p′; ij >< n′p′; i′j|V |np; i′j >

E + εp′p
, (17)

where ρn(E) is the level density of excited states for a neutron, εp′p = εp′ − εp, and
E = E{n′} − E{n}. Further, the summation over {p′} reduces to (np+1)(np+2), the
degeneracy of the energy εnp , times summation over np.

To specify the neutron wave functions ψ{n}(r−ai) to calculate matrix elements
in the above equation, we utilize knowledge obtained in the shell model calculation.
We use the Fermi-gas model with the nuclear harmonic oscillator potential. Then,
the wave functions and energy eigenvalues specified by quantum numbers (n,`,m)
are written down as follows;12)

ψn`m(r, θ, φ) = Rn`(r)Y`,m(θ, φ), (|m| ≤ `) (18)

E{n} ≡ En`m = (n +
3

2
)h̄ωn + ∆ε`m, (19)

where ∆ε`m expresses the l · s and other coupling energies taken symbolically into
consideration to distinguish energies of the states with the same n and different `,m,
ωn is the circular frequency of the nuclear harmonic oscillator and Y `,m(θ, φ) are the
spherical harmonics.

The spherical harmonics Y `,m(θ, φ) are given as follows;

Y0,0 =
1√
4π

, (20)

6



Y1,0 =

√
3

4π
cos θ, Y0,±1 = ∓

√
3

8π
sin θ e±iφ, (21)

Y2,0 =

√
5

16π
(3 cos2 θ − 1), Y2,±1 = ∓

√
15

8π
sin θ cos θ e±iφ,

Y2,±2 =

√
15

32π
sin2 θ e±2iφ, (22)

Y3,0 =

√
7

16π
(5 cos3 θ − 3 cos θ), Y3,±1 = ∓

√
7

48π
(15 cos2 θ − 3) sin θ e±iφ,

Y3,±2 =

√
105

32π
cos θ sin2 θ e±2iφ, Y3,±3 = ∓

√
105

112π
sin3 θ e±3iφ. (23)

In nuclei of palladium isotopes, there are excited neutron states 2f 7/2 and 3p3/2

near zero as shown by shell model calculation with a Woods-Saxon potential.1)

Concrete calculation of the effective potential energy vnp(ii
′j) (17) will be performed

for these levels with wave functions;

ψ2f7/2
(r, θ, φ) = R53(z)Y3,m(θ, φ), (|m| ≤ 3) (24)

ψ3p3/2
(r, θ, φ) = R51(z)Y1,m(θ, φ), (|m| ≤ 1) (25)

R53(z) = cn(
32

210
)1/2z3/2(1− 2

9
z) exp−z/2, (26)

R51(z) = cn(
35

12
)1/2z1/2(1− 4

5
z +

4

35
z2) exp−z/2, (27)

cn = 2(
8α3

n

π
)1/4, z = 2αnr

2, αn =
mnωn

2h̄
,

where mn is the mass of the neutron and ωn= 41/A1/3 MeV.12)

For the interstitial proton (deuteron) wave functions ϕ{p}(R−bj), on the other
hand, we use harmonic oscillator wave functions in a three-dimensional spherical
potential centered at an interstice determined by using diffusion data.16)

ϕ{p}(~R) = ϕnp`m(R, Θ, Φ) = ξnp`(R)Y`,m(Θ, Φ), (28)

εnp`m = (np +
3

2
)h̄ωp, (29)

or by Hermite polynomials Hn(ξ);

ϕ{p}(~R−~bj) = unx(x)uny(y)unz(z), (30)

un(x) = NnHn(αx) exp(−(1/2)α2x2), (31)

α4 = mpK/h̄2, Nn = (
α

π1/22nn!
)1/2. (32)

where R = (R, Θ, Φ), np is an integer, ` ≤ np and |m| ≤ `, εnp`m is the proton
energy of the state ϕnp`m(R), ωp = (K/mp)

1/2 with the force constant K and the
proton (deuteron) mass mp and ni (i= x, y or z) are integers. The wave functions
thus determined include already effects of screening by itinerant and bound in atoms
electrons and also Coulomb repulsion by lattice nuclei.
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The analysis based on the diffusion data16) showed that appropriate wave func-
tions for a proton (deuteron) in the PdH (PdD) is that with n p = 2 (3) in the above
expression and corresponding force constants K are given as

KH = 1.44× 1019 eV/m2 (PdH), KD = 1.22× 1019 eV/m2 (PdD). (33)

The relevant wave functions are written down as follows;1,12)

ϕ1d(R, Θ, Φ) = ξ1d(Z)Y2,0(Θ, Φ), (np = 2) (34)

ϕ2s(R, Θ, Φ) = ξ2s(Z)Y0,0(Θ, Φ), (np = 2) (35)

ϕ1f (R, Θ, Φ) = ξ1f (Z)Y3,0(Θ, Φ), (np = 3) (36)

ϕ2p(R, Θ, Φ) = ξ2p(Z)Y1,0(Θ, Φ), (np = 3) (37)

ξ1d(Z) = cp(
4

15
)1/2Z exp−Z/2, (38)

ξ2s(Z) = cp(
3

2
)1/2(1− 2

3
Z) exp−Z/2, (39)

ξ1f (Z) = cp(
8

105
)1/2Z3/2 exp−Z/2, (40)

ξ2p(Z) = cp(
5

3
)1/2(1− 2

5
Z) exp−Z/2, (41)

cp = 2(
8α3

p

π
)1/4, Z = 2αpR

2, αp =
mpωp

2h̄
, ωp = (K/mp)

1/2.

It should be noticed that the determination of the proton (deuteron) wave function3)

is tentative and should be revised when new data on the quantum mechanical states
of hydrogen isotopes in transition-metal hydrides become possible to use.

A concrete expression of one of the matrix elements (16) for PdH is expressed
using wave functions (24), (25), (34) and (35) as follows;

< 2f7/21d; ij|V |3p3/22s; ij >

= −
∫ ∫

d~rd~RjR53(zi)Y3,0(θi, φi)ξ1d(Zj)Y2,0(Θj, Φj)

× Vsw(~r − ~Rj)R51(zi)Y1,0(θi, φi)ξ2s(Zj)Y0,0(Θj, Φj),

zi = 2αn|~r − ~ai|2, Zj = 2αp|~Rj −~bj|2, (42)

where ai is a nearest neighbor lattice site of the interstice bj, K in αp is KH given
in (33), and (θi, φi) and (Θj, Φj) are angles measured from origins at ai and bj,
respectively.

Similar expression for PdD using deuteron wave function with n = 3 is written
as follows if the neutron-deuteron interaction potential is written as V (nd)

sw (r−Rj);

< 2f7/21f ; ij|V |3p3/22p; ij >

= −
∫ ∫

d~rd~Rj R53(zi)Y3,0(θi, φi)ξ1f (Zj)Y3,0(Θj, Φj)

× V (nd)
sw (~r − ~Rj)R51(zi)Y1,0(θi, φi)ξ2p(Zj)Y1,0(Θj, Φj). (43)
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In this equation, the force constant K in αp should be taken as KD given in (33).
Because the triton is much more tightly bound than the deuteron, the potential

V (nd)
sw (r−R) in (43) should be deeper than V sw(r−R) in (42). For a qualitative

calculation of the matrix element (43), we may use a following form for the potnetial;

V (nd)
sw (~r − ~R) = ξVsw(~r − ~R), (44)

where ξ is a numerical factor of an order of the ratio of binding energies of triton
(8.5 MeV) and deuteron (2.2 MeV) reduced to per a nucleon; ξ∼ (8.5÷3)/(2.2÷2)
∼ 2.6.

To calculate matrix elements (42) and (43), we use a simplified form of the
neutron wave functions (24) and (25) using the Dirac delta-function;18)

ψn`m(r, θ, φ) = (
2δ(r)

r2
)1/2Y`m(θ, φ). (45)

Then the integrals over r can be done readily and the result for (42) is written as

< 2f7/21d; ij|V |3p3/22s; ij > = −V s
0

∫
d~Rjξ1d(Zj)Y2,0(Θj, Φj)ξ2s(Zj)Y0,0(Θj, Φj),

(46)
in which the integral should be done in a region where |Rj−ai| is less than b, the
range of the square-well potential. Similar expression for the matrix elements for
deuterium system is obtained for (43) with an extra factor ξ in front of the integral
on the right-hand side.

The order of magnitude of the effective potential energy vnp(ii’j) for PdH, how-
ever, is roughly estimated as follows: the proton wave function φp(R) is slowly
varying in the range of the nuclear force, and the nuclear wave function ψ{n}(r)
is approximated by a delta-function as given in above Eq.(45). Then, an order of
magnitude of the matrix elements < np; ij|V |n′p′; ij > is given as

| < np; ij|V |n′p′; ij > | ∼
∫

ψ∗nψnd~r < V > φ∗pφpΩ (47)

∼ 1× 4

3
πr3

0 × |u2(xN)|2|u0(0)|2|u0(0)|2

= 3.2× 10−14 eV, (48)

where Ω is the volume of the Pd nucleus, < V > = |V (s)
0 | = 3.5 MeV (Eq.(7)), ϕp(R)

is taken as u2(x)u0(y)u0(z) and xN = 1.95 Å is the position of the lattice nucleus
measured from the interstice.

Putting this value (47) into Eq.(17), we can estimate the effective potential
energy vnp(ii

′j) as a function of the principal value of the integration appeared in
that equation, assuming the insensitiveness of the matrix elements to the energy:

vnp(ii
′j) ∼ 1× 10−27(eV2)I, (49)

I ≡ P
∫ ρn(E)

E
dE.
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We can, then, estimate the approximate value of the integral I, taking following
values ρn(E) ∼ 109 keV−1, δε ∼ 10−9 keV, and ∆ε ∼ 1 keV on the assumption that
single particle energy level difference is ∼ 1 keV and the level density increases to
109 times larger than that of single particle motion:

I ∼ ρn(ε)

δε
∆ε = 1015 eV−1. (50)

Thus, an order of magnitude of vnp(ii
′j) in PdH becomes

vnp(ii
′j) ∼ 1× 10−12(eV). (51)

The value of vnp(ii
′j) in PdD may be taken as one order of magnitude larger

than this value if we consider the factor ξ=2.6 (ξ2 = 6.8) and u3(xN) instead of
u2(xN) in Eq.(47).

4. Tight-Binding Neutron Bands in Transition-Metal Hydrides and Deu-
terides

The approximate effective potential energy vnp(ii’j) obtained above is used to
calculate the band structure of the neutron energy in transition-metal hydrides (deu-
terides) originated in the excited states of neutrons in lattice nuclei mediated by
occluded hydrogen isotopes.

To show crystal-structure dependence of the band width, we can use a simpli-
fication of the super-nuclear interaction between adjacent nuclei assuming that it
depends only on the magnitude of vectors (ai−ai′) ≡ ai (taking ai′= 0). We can,
then, rewrite the neutron parts of expression (12) as follows;

E = En − α− γ
∑

i

e−i(~k~ai), (52)

−α = vnp(iij), (53)

−γ = vnp(ii
′j). (54)

Neglecting direction dependence of the effective potential, we have the energy spec-
trum of neutron Bloch waves in the face centered cubic (fcc) lattice from this equa-
tion (a is the side of the cube);

E = En − α− 2× 4γ(cos
1

4
kya cos

1

4
kza

+ cos
1

4
kza cos

1

4
kxa + cos

1

4
kxa cos

1

4
kya)

−2γ(cos kxa + cos kya + cos kza), (fcc) (55)

where summation over the index i is over neighbors combined each other by a
proton (deuteron). The factor 2 in the third term on the right comes from the
fact that nearest neighbor lattice nuclei are mediated by two protons at different
interstices while next nearest ones are by only one. A characteristic of this energy
band formation is the contributions from nearest (0,±a/2,±a/2) etc. and also from
next nearest (±a, 0, 0) etc. neighbors to the k-dependent terms.
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The energy of a neutron consists, therefore, of a constant term En − α and
terms which depends on the wave vector k. Thus, there exists a nuclear energy
band in the crystal corresponding to an energy level of a neutron in the free nucleus
when there are a high density of protons (deuterons) at interstices (ideally at each
interstice). The effective potential energy vnp(ii

′j) (13) gives a value of the integral
γ, and hence the band width ∆ in metal hydrides. It should be noticed here that
the band structure of neutron energy depends not only on the excited state of a
neutron in lattice nuclei but also on the lattice structure; geometry of lattice sites
and also interstices. The nuclear interaction of nuclei in metal hydrides (deuterides)
is, therefore, influenced strongly by the symmetry and lattice constants of the crystal
that can occlude hydrogen isotopes.

The neutron energy bands originating in excited states of lattice nuclei are lo-
cated just below zero energy and contrasted to those originating from free neutron
states above zero worked out in a previous paper.5) The former could be named
neutron valence band and the latter neutron conduction band to distinguish them
in the following discussion of the characteristic nuclear reactions in transition-metal
hydrides and deuterides.

Using the value of vnp(ii
′j) given in (51), we obtain a semi-quantitative estima-

tion of the valence band width ∆ from Eq.(55):

∆ = 24vnp(ii
′j) ∼ 10−8 (meV) (PdH). (56)

Thus, it is concluded that the matrix elements (42) should be 105 times larger
than the values estimated in (48) to substantially keep the neutron bands below
zero which was determined to form in solids with a width ∆ ≥ 25 meV that is not
destroyed by the thermal motion of ions at room temperature. This is realized only
when the neutron wave function (1) extends out as the wave function (2) from a
lattice nucleus to regions where a wave function of the occluded proton (30) has a
larger value by a factor 105 than that at the lattice nuclei.

The main term of the proton wave function relevant to this behavior is the
exponential factor e−

1
2
α2x2

in (31) and it gives this value 105 at x0 = 1.43 Å from
an interstice (or 0.52 Å from a lattice point). If this behavior is coupled with an
extension of the neutron wave function (2), then the neutron-proton interaction can
contribute to formation of a neutron valence band with a width of ∆ ≥ 25 meV.

From a point of view of the isolated nucleus treated in conventional nuclear
physics, this is an unconceivable situation. While, the extension of a neutron wave
function (2) far away to 0.52 Å = 5.2 × 10−9 cm over the nuclear range of r0 = 10−13

cm, i.e. 104 times longer than r0, is not absurd in the situation we are considering
here.

As was shown by numerical calculation in a previous paper,11) the energy of
thermal neutrons interacting with lattice nuclei by the attractive nuclear force is
pulled down below zero; the states of propagating waves then become quasi-localized
states around lattice nuclei with a damping factor depending on the strength of the
attractive interaction. The same situation is also realized from opposite direction
as a limit of highest bound states as shown in Eq.(2). We consider here an s-type
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wave function for the state, for simplicity:

ψη(~r − ~ai) = cie
−iη|~r−~ai|. (57)

To extend the neutron wave function to the range of λ = 5.2 × 10−9 cm referred
above, the decay constant of the state η(|E|) = 1/λ should be 1.9 × 108 cm−1 and
this corresponds to an energy E:

|E| =
h̄2

2mn

η(|E|)2 = 7.4 (eV) (58)

below zero, where mn = 1.67 × 10−24 g is the neutron mass. In other words,
the excited states of isolated lattice nuclei with energies down to 7 eV from zero
can participate to the neutron valence band, or the neutron bands below zero, in
transition-metal hydrides considered above.

If the state has less energy, i.e. far from zero, and the extension of the state is
less than 5.2 × 10−9 cm, the band state fails to be substantially formed even in PdH
and neutrons are essentially in single particle states in isolated lattice nuclei.

The width ∆ of the neutron band (55) is ∼ 24γ = 24vnp(ii
′j). Putting the

numerical values obtained in (42) for PdH and one for PdD by multiplying a factor
of 10 to that of PdH as discussed on the end of Section 3, we obtain

∆ = 10−8 (meV) (PdH), (59)

∆ = 10−7 (meV) (PdD). (60)

Thus, these neutron states pulled down to just below zero from free states above zero
by attractive interaction with lattice nuclei or excited states of lattice nuclei close
to zero energy can be candidates of those states participating the neutron valence
bands below zero in transition-metal hydrides considered above.

Matrix elements of similar interactions between a neutron in the ground state
at its highest level (e.g. 2d5/2 in 106

46 Pd) and an interstitial proton (deuteron) in the
excited state are written down as follows;

< 2d5/21d; ij|V |1g7/22s; ij >

= −
∫ ∫

d~rd ~Rj R42(zi)Y2,0(θi, φi)ξ1d(Zj)Y2,0(Θj, Φj)

× V
(G)
0 e−|~r−

~Rj |2/r2
0R44(zi)Y4,0(θi, φi)ξ2s(Zj)Y0,0(Θj, Φj). (61)

A numerical calculation of this matrix element gives a little smaller value than
that of the above one (48). This is also easily confirmed as follows. The matrix
element (16) with proton (deuteron) wave function of the ground state ϕ1s(R)=
ξ1s(Z)Y 00(Θ, Φ) is estimated using a nature of harmonic oscillator wave functions
that the mean-square displacement in the n-th excited state is proportional to the
energy of that state.19) Therefore, the matrix elements for PdH (the second excited
state) and for PdD (the third) in these ground states become 1/5 of the value of
(42) and 1/7 of the value of (43), respectively, which we have not estimated exactly.
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The effective potential energy vnp(ii
′j) (13) of the super-nuclear interaction cor-

responding to the matrix elements (61) is, however, extremely small compared with
that corresponding to (42) or (43) due to the factors ρn(E) in (17) and the denom-
inator (En′,p′−En,p) of terms in the summand of (13). The value of ρn(E) in (17)
is 106 times larger than that we expect for the occupied highest levels (e.g. for
2d5/2 in 106

46 Pd) of the ground state and accordingly the denominator of (13) is larger
by the same factor. The result of these two causes gives 10−12 smaller values for
the effective potential vnp(ii

′j) and therefore the band width ∆ even if the matrix
element (61) has a value of the same order of magnitude with that of (42). Thus,
the lattice nuclei in their ground state are best described as an ensemble of isolated
independent nuclei as treated usually in solid state physics.

5. Cold Fusion Phenomenon in Transition-Metal Hydrides and Deu-
terides

The neutrons in a band show several characteristics when they are in a crystal
with a finite extension limited by reflecting walls which are formed at boundaries of
of a crystal or at interfaces of two crystals having different nature.6)

First of all, neutrons with wave vectors around Brillouin zone boundaries have
local coherence in a definite length (a coherence length) at the reflecting bound-
ary. The local coherence produce an accumulation of high-density neutrons in the
boundary region with a finite width, of an order of the coherence length, which
is determined by the structure of the dispersion relation of the band neutron; the
narrower the energy band, the larger the coherence length as far as the band is
an effective concept to describe the neutrons. The effective minimum band-width
∆min may be given by thermal energy of the lattice kT ; ∆min ∼ kT . The expected
density of neutrons in the coherence region is estimated7) from experimental data in
CFP as high as 1030 cm−3 to form clusters of neutrons with a few protons (neutron
drops).7,8)

The new state of neutrons in solids discovered in this and previous works3,6,7)

will show various novel phenomena induced by its interactions with lattice nuclei.
One of these phenomena should be the so-called cold fusion phenomenon (CFP) ob-
served mainly in transition-metals and proton conductors including a lot of hydrogen
isotopes.

It has been a long controversy about reality of the CFP, i.e. nuclear reactions and
accompanying events occurring in solids with high densities of hydrogen isotopes in
ambient radiation,6,9) since the announcement of its discovery of some events belong-
ing to CFP in samples of palladium deuteride.20) In these more than twelve years,
it is shown that CFP occurs not only in the deuterium system, mainly transition-
metal deuterides supposed at first as one of necessary conditions for CFP, but also
in the hydrogen system mainly transition-metal hydrides with sufficient contents of
hydrogen isotopes above lower limits of their content. The lower limit in PdD seems
around D/Pd ∼ 0.7.21)

The phenomenon is, further, characterized by following properties.6,9,10,21)

1) It occurs sporadically and with qualitative reproducibility. The former means
that its occurrence is not predictable while the latter that the effects be distributed
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in its yield from null to a maximum for the same macroscopic initial condition.
2) The events in CFP is classified into direct and indirect events in relation with

presumed nuclear reactions. The former events directly show occurrence of nuclear
reactions in the system and are composed of the energy spectra of gammas and
neutrons from the samples and also spatial distributions of nuclear products in them.
The latter events indirectly show occurrence of nuclear reactions and are composed
of the huge excess heat, inexplicable by atomic and/or chemical processes, and large
amount of helium-4 and tritium in addition to transmuted nuclei not specified its
position of birth.

3) There are definite relations between products of these events. Let us denote
the number of an event X as NX , and define NQ, number of the event producing
the excess heat Q (measured in MeV) by

NQ ≡ Q/5(MeV).

There are, then, following relations between NX , experimentally observed amounts
of X (4He, tritium, transmuted nuclei) and NQ;

NQ ∼ NX . (62)

4) Nuclear reactions responsible to the CFP seem to occur in localized regions
of a diameter of a few µm in the near-surface layer of thickness less than 10 µm
which is determined experimentally by distribution of transmuted nuclei and also
by principal measurement of 4He outside the samples. The thickness of the near-
surface layers are about few µm up to about 10 µm.

5) Amount of gammas is very few compared with amounts of observed 4He,
tritium, and transmuted nuclei, therefore, with that of the excess heat. This char-
acteristic is called gammaless nuclear reactions in CFP.

It is necessary, then, to seek a key mechanism to explain CFP both in transition-
metal hydrides and deuterides if we want to treat them in the same frame and not
try to seek different mechanisms for each system.

There is a phenomenological model, named the TNCF model (trapped neutron
catalyzed fusion model), which is fairly successful in explanation of various phases
of CFP.9∼11,21) The model is constructed on several premises based on experimental
facts. One of fundamental premises is existence of quasi-stable neutrons in solids
(trapped neutrons) with a density nn, which is taken as a single adjustable pa-
rameter. In a few optimum cases where measured several events simultaneously,
the single adjustable parameter nn, fortunately, could be determined uniquely to
explain them consistently as a whole.

The values of nn determined by experimental data sets, more than sixty sets as
a whole,11,21) are in a range 108 ∼ 1013 cm−3. This figures compared with number
of lattice nuclei of the order of 1023 cm−3 (e.g. ∼ 6.8 × 1022 cm−3 in Pd metal)
give relative values of 10−15 ∼ 10−11 for trapped neutrons to lattice nuclei ratio; as
a result, one neutron per 1011 ∼ 1015 lattice nuclei is necessary to explain CFP by
the mechanism assumed in the TNCF model. Excitation of neutrons of this ratio
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into the neutron valence bands from lattice nuclei could be realized by trigger reac-
tions initiated by neutrons fed into the neutron conduction band from background
neutrons as discussed in the explanation of TNCF model.9∼11,21)

The phenomenological assumption of quasi-stable neutrons in solids, in turn, has
suggested fundamental mechanisms causing CFP in samples with above mentioned
characteristics, especially in transition-metal hydrides and deuterides. Investigation
of behaviors of neutrons in solids given in previous3,5,7) and this papers revealed new
features of neutron physics.

The calculation done in this paper has given rather quantitative verification of the
basis of the TNCF model; it is shown that a neutron in an excited state of a lattice
nucleus can be coupled with another in a corresponding state of another lattice
nucleus by the super-nuclear interaction mediated by occluded protons (deuterons)
and there appear band states of these neutrons. The neutron Bloch waves in these
energy bands are responsible to CFP just the same way as these quasi-stable trapped
neutrons assumed in phenomenological explanations of characteristics of CFP in
previous papers.6,9∼11)

6. Discussion
First of all, it should be kept in mind following facts about anomalous nuclear

reactions in solids. The cold fusion phenomenon (CFP) is most frequently observed
in transition-metal deuterides and hydrides, especially in TiD (H), NiH (D), and
PdD (H). Furthermore, these transition-metal nuclei have a common characteristic;
existence of excited neutron levels near zero in an isolated nucleus, 1f5/2 in Ti, 3s1/2

in Ni, and 2f7/2 in Pd.1) Therefore, the investigations on PdH (D) given in the
preceding sections are straightforwardly applicable to such materials as TiD (H),
NiH (D), and others with necessary modifications to meet characteristics of each
material.

When there are many neutrons in a neutron band formed by characteristics of
transition-metal hydrides and deuterides, there appear interesting features of neu-
tron’s behavior at boundaries/surfaces that reflect neutrons back into the crystal;
”local coherence” of neutron Bloch waves, and therefore, high densities of neutrons
appear there6). High-density neutrons in the boundary region7) or in neutron star
matters8) induce formation of ”neutron drops” (or clusters of many neutrons and
a few protons) in a thin neutron background. These neutron drops in a thin neu-
tron background interact with nuclei to produce new nuclear effects in the bound-
ary/surface region.

In this paper, we have shown a new feature of neutron physics in transition-
metal hydrides and deuterides using the physics of these compounds and of excited
neutron states in nuclei. Based on the new knowledge, we can give a qualitative
explanation of these riddles 1) to 5) in CFP written down in the previous section
in addition to other nuclear reactions characteristic to solid state-nuclear physics
completely different from physics of an isolated nucleus.

a) It is necessary to have such ordered structures of appropriate lattice nuclei
and occluded hydrogen isotopes as PdH (D) or TiH2 (D2) to realize neutron valence
bands below zero. The transition-metal nuclei should have high-density excited
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neutron levels around zero energy. It is necessary, also, to excite occluded inter-
stitial protons (deuterons) to excited states, to the second (the third) one in PdH
(PdD). The process of appropriate structure formation, even in local region, con-
tains stochastic atomic processes and the optimum structure is established only with
qualitative reproducibility.

b) To trigger CFP (i.e. to excite enough neutrons into the neutron valence
band), it is necessary to have a few trapped neutrons in a neutron conduction band
above zero,6,9,21), perhaps, fed from the background neutron. The trapped neutrons
in the neutron conduction band form neutron drops in the boundary region and
react with hydrogen isotopes to produce enough energy to excite neutrons in lattice
nuclei to the neutron valence bands. This process occurs sporadically governed by a
probability law.

c) Neutrons in the neutron valence bands form, also, neutron drops in the bound-
ary/surface region where occur various reactions responsible to events in CFP. The
locality of nuclear products of CFP is natural results of this mechanism to induce
nuclear reactions between neutron drops and nuclei in the sample; lattice nuclei,
occluded hydrogen isotopes and nuclei deposited on the sample.

d) The energy liberated in nuclear reactions occurring in the boundary region
are shared by nuclides coupled each other through the super-nuclear interaction
and can be dissipated through various channels not confined to those known in
isolated nuclei. The gammaless nuclear reactions in CFP is surely the result of this
characteristic of nuclear reactions in nuclei coupled each other.

e) As a result of the neutron drop-neucleus interaction, a nucleus in its excited
state can decay rapidly giving excitation energy to other particles in solids through
neutron drops. The nuclear transmutation by decay and the decay-time shortening
are observed in CFP as noticed by us.21)

f) The neutron drop-nucleus interaaction results in also an unbelievable fission
reactions in CFP. The nuclear transmutation by fission analyzed by us21) and by
Fisher22) is the proof of this reaction.

The difference of the baand width ∆ of PdH and PdD given in Eqs.(59) and
(60) tells us the latter is advantageous to realize CFP if other conditions are the
same. This result seems in accordenace with experience obtained in a decade of CF
research.

Furthermore, it is possible to deduce some interesting features of protium and
deuterium systems depending on spins of the proton and the deuteron which we
have neglected in the treatment given above, for simplicity. The neutron has a
spin 1

2
h̄ and a magnetic moment −1.91315 µ0, the proton 1

2
h̄ and 2.79278 µ0, the

deuteron 1 h̄ and 0.8574 µ0 and the triton 1
2
h̄ and 2.98 µ0 with the nuclear magneton

µ0 = eh̄/mNc. Therefore, a system composed of a neutron in an excited state of a
lattice nucleus and an interstitial deuteron (e.g. PdD) is in lower energy state if they
have opposite spin, or the same direction of magnetic moments, which is realized by
application of a strong magnetic field to the system. This effect of magnetic fields to
make feasible occurrence of CFP will be observed in deuterium systems (e.g. PdD)
but not in protium systems (e.g. PdH).

In conclusion, scientifically, the cold fusion phenomenon (CFP) gives a mean to
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investigate excited neutron levels near zero in transition-metal nuclei and also neu-
tron energy bands derived from them by the super-nuclear interaction mediated by
hydrogen isotopes. Knowing physical processes of CFP in transition-metal hydrides
and deuterides, we can proceed to next steps in physics; improvement of qualitative
reproducibility, enhancement of frequency of sporadic occurrence of events in CFP.

In technology, the physics of transition-metal hydrides and deuterides gives wide
possibility to se their characteristics in application. Some examples are the necessary
protection of hazardous radiation from the reaction systems, the effective remedi-
ation of radioactive nuclides produced in atomic piles, the effective production of
tritium accompanied with heat production, and so on.

Finally, we would like to notice a new point of view; it should be considered that
various events in CFP are results of measurements using various probes to look into
physics of a complex system composed of transition metals and hydrogen isotopes
occluded in them in ambient radiations. If we do not confine our investigation in a
narrow scheme presupposed by a biased viewpoint, new perspective can be developed
on the basis suggested by experimental facts, even if they seem too complicated at
first sight to be treated consistently.

The treatment of palladium hydrides and deuterides in this paper is, of course,
qualitative because it is confined to PdH and PdD with simplifying assumptions on
wave functions ψ{n}(r− ai) and φ{p}(R− bj) to make calculation feasible and also
there are many approximations in calculations of integrals. The result, however,
semi-quantitatively shows a possible appearance of the super-nuclear interaction
and the neutron valence bands in transition-metal hydrides. The nuclear reactions
induced by neutron drops interacting with nuclei should be very different from nu-
clear reactions observed in isolated nuclei well known in nuclear physics and will show
new features of solid state-nuclear physics not well explored until now. The results
are applied straightforwardly to other transition-metal hydrides and deuterides and
proton conductors.
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