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Abstract 

   The cold fusion phenomenon (CFP) was investigated from the point of 

view developed in nonlinear dynamics. It was shown that the recursion 

relations are applicable to events in the CFP to explain their characteristics 

using the density of the trapped neutrons in the TNCF model as a parameter 

of the recursion function. 

 

1. Introduction 

The cold fusion phenomenon (CFP) contains events related with nuclear 

reactions accompanying excess energy production. In these events, we have 

determined experimentally parameters governing the occurrence of the CFP 

such as the loading ratio η (=D/Pd, H/Ni, etc.), temperature T, current 

density i to the cathode in electrolytic and discharge systems, etc. The events 

also show a characteristic of the recursion relations 

 xn+1 = λ f(xn),                                                  (1) 

well investigated in nonlinear dynamics [1]. 

   It is interesting to notice that a large class of recursion relations (1) 

exhibiting infinite bifurcation possesses a rich quantitative structure 

essentially independent of the recursion functions f(x) when they have a 

unique differentiable maximum x. With f(x) – f(x) ∼ |x – x|z (for |x – x| 

sufficiently small) and z > 1, the universal details depend only upon z.  

   In particular, the local structure of high-order stability sets is shown to 

approach universality rescaling in successive bifurcations, asymptotically by 

the ratio α (α = 2.5029078750957… for z = 2) [1].  

   We investigate the CFP from the point of view described by the recursion 

relations (1). 
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2. Structure of the Population (Density) Equation  

The recursion equations (1) provide a description for a variety of problems. 

For example, a discrete population (density) satisfies the formula 

pn+1 = f(pn),  

determining the population (density) at one time in terms of its previous 

value [1]. 

   The events we observe in the CFP seem to belong this type of quantities 

obeying the relations (1) as we have partly shown in recent works [2 – 5]. We 

confine our investigation in this paper to the discrete population (density) 

relations and make the result show its validity. 

   If the population (or density) referred to is such that of a dilute group of 

organisms (or agents e.g. density of trapped neutrons nn in the CFP), then 

the population (density) equations 

   pn+1 = b pn                                                                     (2)  

accurately describe the population (density) growth with a growth rate b so 

long as it remains dilute, with the solution 

     pn = p0 bn.                                               (3) 

   For a given species of organism (agent) in a fixed milieu, b is a constant – 

the static birth rate for the configuration. 

   As the population grows, the dilute approximation will ultimately fail: 

sufficient organisms (agents) are present and mutually interfere. At this 

point, the next value of the population (density) will be determined by a 

dynamic or effective birth rate beff: 

   pn+1 = beff pn                                                                            (4) 

with beff < b. Clearly, beff is a function of p, with  

   limp→0 beff (p) = b,                                               (5) 

the only model-independent quantitative feature of beff. It is also clear that 

limp→∞ beff (p) = 0.                                              (6) 

   Accordingly, the simplest form of beff to reproduce the qualitative 

dynamics of such a population (density) should resemble Fig. 1, where beff (0) 

= b is an adjustable parameter. 

 A simple specific form of beff (p) is written with a constant a; 

      beff (p) = b – ap,                                             (7) 

so that  

      pn+1 = beff pn – a pn
2. 

By defining pn ≡ (b/a)xn, we obtain the standard form of logistic difference 
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equations (l.d.e.) 

      xn+1 = bxn (1 – xn).                                          (8) 

In (8), the adjustable parameter b is purely multiplicative. With a 

different choice of beff, xn+1 would not in general depend upon b in so simple a 

fashion [1]. Nevertheless, the internal b dependence may be (and often is) 

sufficiently mild in comparison to the multiplicative dependence that at least 

for qualitative purposes the internal dependence can be ignored. Thus, with 

f(p) = p beff(p), any function like Fig. 1,  

      pn+1 = bf(pn)                                                (9) 

is compatible and representative of the population (density) discussed [1]. 

 

Fig. 1. Dependence of f(p) = p beff(p) on p after Feigenbaum [1]. 

 

 

Fig. 2. Bifurcation diagram to show period-doubling and chaos (From “Chaos” by J. 

Gleick [6]. p.71). The main figure depicts x∞ on the ordinate (x∞ is xn at n = ∞) vs. the 

parameter λ on the abscissa of the logistic difference equation, i.e. l.d.e., xn+1 = λ xn(1 – 

xn ) (0 < x0 < 1). The inserted figures, a) Steady state, b) Period two, c) period four, and d) 

chaos, depict variations of xn with increase of suffix n (temporal variation if n increases 

with time) for four values of λ; a) 1 < λ < 3, b) 3 < λ < 3.4, c) λ ≃ 3.7, d) 4 < λ. The region a), 

b) and d) correspond to “Steady state”, “Period two” and “Chaotic region” in the main 

figure, respectively. 
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   To investigate the structure of the population (density) equation (8), we 

study the l.d.e. after J. Gleick [6]. Figure 2 is a bifurcation diagram showing 

period-doubling and chaos [6, p. 71]. 

 

3. Parameters of the l.d.e. in the CFP 

   We investigate complexity of the cold fusion phenomenon (CFP) assuming 

that the density (or population) of agents for the CFP obey the recursion 

equations (1) or rather the simplified equation, the l.d.e. (8). 

   In accordance with the quantum mechanical explanation of mechanisms 

of the CFP, we may take the trapped neutron (the quasi-free neutron in the 

CF materials) as an agent for the CFP and its density nn as the variable xn in 

the l.d.e.  

The number of reactions NnX (per unit time) between trapped thermal neutrons 

and a nucleus 
A

ZX is assumed to be calculated by the same formula as the usual 

collision process in a vacuum [3]: 

NnX = 0.35 nn vn nXVσnX,                                    (10) 

where 0.35 nn vn is the flow density of the trapped thermal neutrons per unit area and 

time, nX is the density of the nucleus 
A

ZX, V is the volume where the reaction occurs, 

σnX is the cross section of the reaction. 

   Then, the equations (8) applied to the CFP describes evolution of the 

adjustable parameter nn (density of the trapped neutrons at an active region) 

due to variations of the CF material accompanied with such nuclear 

reactions in CF materials as 

      n + p = d (1.33 keV) + φ’s (2.22 MeV),                      (11) 

      n + d = t (6.98 keV) + φ’s (6.25 MeV),                     (12) 

      t + d = 42He (3.5 MeV) + n (14.1 MeV),                     (13) 

where φ’s mean phonons generated at the reaction in the CF material 

instead of a photon in the case of these reactions occurred in the free space. 

The evolutions of nuclear products and/or excess energy due to n – p and 

n – d reactions are proportional to nn and Eq. (10) is rewritten as follows; 

      Nnp = 0.35 nn vnnpVσnpτ,                                      (14) 

      N nd = 0.35 nn vnndVσndτ,                                      (15) 

where np and nd are the densities of protons and deuterons, σnp = 3.32 × 10–1 b 

and σnd = 5.5 × 10–4 b (1 b = 10–24 cm2) are the cross sections of the n – p and n 

– d reactions for a thermal neutron, respectively.  

   There are several data sets which were obtained in systems with 
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temperature variation. In these cases, such variables as nn , vn, σnX (σnp, σnd) 

in Eqs. (10), (14) and (15) are temperature dependent and therefore the 

number of reactions N depends on the temperature T.; 

      N = N(T).                                                  (16) 

   Furthermore, it should be noticed that the number N expressed as Eq. 

(16) shows also a temporal evolution of the nuclear products (including also 

the excess heat) when the parameter nn depends on the time variable τ even 

if other quantities are not; 

      N(τ) = Cnn (τ),                                             (17) 

where C is a constant independent of time. 

   The parameter b in the l.d.e. (8) specifies evolution of the population (or 

density) xn as we see in Fig. 2. The larger the constant (parameter) b is, the 

more complex the evolution (and bifurcation) becomes. 

   In the CFP, the parameters governing the events are experimentally 

figured out as follows; The most evident parameter is the loading ratio η of 

hydrogen isotopes to host metals (η = D/Pd, D/Ti, H/Ni, etc.). The other less 

definitely specified parameters are the temperature T, current density i to 

the cathode, homogeneity of composition in the active region of alloys 

(transition-metal hydrides and deuterides), a distance from equilibrium 

state, density of trapped neutrons nn , etc. 

   Leaving comprehensive discussion about the parameters governing the 

CFP to the next paper, we show here only an example obtained by De Ninno 

et al. [7]. In their experiment, a titanium (Ti) sample in the shape of 

shavings was put in contact with a deuterium (D2) gas with pressures up to 5 

MPa at varying temperatures between 77K and room temperature. The 

samples were, thus, put in a dynamical condition for the process of 

absorption/desorption of deuterium in titanium.  

   Using a BF3 neutron counter with high sensitivity (efficiency ≃ 5 × 10–5), 

they could observe neutron emissions in two runs up to 320 counts/10 min 

under a low background condition with an average value of 2.3 counts/10 min 

The results were shown in Figs. 3 and 4. 
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Fig. 3. Diagram showing the time evolution of the neutron emission from TiDx sample 

during the run A (April 15-16, 1989). The values indicated are integral counts over 

periods of ten minutes (Fig.3 of [7]). 

 

Figure 3 is a diagram showing the temporal evolution of the neutron 

emission during the run A (April 15 – 16, 1989). In this run, the system was 

put in the desorption phase; the deuterium gas was evacuated and the 

liquid-nitrogen Dewar was removed from the initial situation where 

deuterium pressure was 5 MPa at 77 K. Thus, the temperature of the system 

increases from 77 K at time 0 to room temperature about time 61 h 

accompanying desorption (and therefore decrease of the loading ratio η = 

D/Ti). From our point of view, this process can be interpreted as an increase 

of the parameter nn (density of trapped neutrons) with increase of 

temperature despite of the decrease of η at first and then a decrease of nn due 

to the decrease of η. 

   This variation of the parameter n is qualitatively described in Fig. 1 

simulating an envelope of Fig. 3. This behavior suggests that neutron 

emission in this case is determined by a nuclear reaction such as Eq. (12) 

(followed by Eq. (13) to emit neutrons) where the reaction rate is 

proportional to the density nn of the trapped neutrons assumed in the TNCF 

model. 
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Fig. 4. Diagram showing the time evolution of the neutron emission counts (ordinate) 

during the run B (7-10 April, 1989) by De Ninno et al. [7]. The values indicated are 

integral counts over periods of 10 minutes. 

 

   Fig. 4 is a diagram showing the temporal evolution the neutron emission 

during the run B (April 7 – 10, 1989). In this run, D2 gas was admitted to the 

cell in steps of increasing pressure after degassing the Ti sample. A pressure 

around 5 MPa was reached and then the temperature was lowered to 77 K by 

immersing the cell in a Dewar full of liquid nitrogen. At this point, the 

system was left to itself, at constant pressure, with the aim of obtaining 

changes of temperature both in time and space while the level of liquid 

nitrogen in the Dewar was going down. 

   In Fig. 4, the down directed arrows indicate liquid-nitrogen fillings. The 

up-directed arrow shows the time when the Dewar was taken away and the 

system was thus allowed to rise to room temperature. Thus, the abscissa of 

this diagram is not necessarily represents temperature of the system as in 

the case of Fig. 3. 

   We notice a characteristic of time pattern of neutron emission appeared 

in Fig. 4 that there are two levels of emission as if they are “quantized.” We 

can give a possible explanation for this behavior by the bifurcation as 

appeared in Fig. 2.The inserted diagram “period two” shows an appearance 

of two stable states by bifurcation according to the increase of the parameter 

λ (b in Eq. (8)). We may identify two levels appeared in Fig.4 as the two 

states shown in the “period two” diagram. 
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4. Conclusion 

We have shown that the recursion relations (1) studied in nonlinear 

dynamics may be applicable to dynamics of nuclear reactions in the CFP. 

Experimentally, observations of neutron emission illustrated characteristics 

of the l.d.e. suggesting the applicability of the nonlinear dynamics to the 

CFP.. 

Further investigation of the CFP as a complexity will be given in the 

following paper [8]. 
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