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Synopsis

The interaction between a neutron in a nucleus at a lattice point (in a lattice nucleus) and another
neutron in a different lattice nucleus mediated by a proton (or deuteron) at an interstitial site is
formulated. The intcraction between neutrons through the interstitial protons (or deuterons) could
be called the super-nuclear interaction for its long-range nature even if the strength may be extremely
small compared with neutron-ncutron interaction by the nuclear force in a nucleus. If the neutrons are
in an excited state of the nucleus with a wave function with larger orbits than that of the ground statc,
the interaction becomes considerable to make the excited states form a rather wide band {neutron
valence band) similar to valence bands of electrons in semiconductors, Possible influences of the
super-nuclear interaction on the nuclear reactions in solids are discussed.

1. Introduction

It has been shown that thermal neutrons from ambient are trapped in a crystal with a finite
extension limited by reflecting walls, which are formed at boundaries of two crystals at the surface
having different nature.b'?) Then, the energy spectrum of these neutrons forms a band structure with
positive energies (a neutron conduction band).?) These neutrons will show several characteristics rele-
vant to the cold fusion phenomenon (CFP), i.e. nuclear reactions and accompanying events oceurring
in solids with high densities of hydrogen isotopes in ambient radiation.? First of all, ncutrons with
wave vectors around Brillouin zone boundaries have local coherence in a definite length (a coherence
length) at the reflecting boundary.

The local coherence, then, produces a high density of neutrons in the boundary region with a finite
width, of an order of the coherence length, which is determined by the structure of the dispersion
relation of the band neutron; the narrower the energy band, the larger the coherence length as long
as the band is an cffective concept Lo deseribe the neutrons. The effective minimum band-width
Apmin may be given by thermal energy of the lattice kT as follows; Apmin ~ kT. This relation gives a
temperature effect on the state of neutrons in solids.

The expected density of ncutrons in the coherence region is estimated from experimental data in
CFP to be as high as 1030 cm ™, resulting in clusters of nentrons with a few protons (neutron drops).>
The new state of neutrons in solids discavered in these works will show various novel phenomena
induced by the intcraction of neutrons with lattice nuclei. One of these phenomena should be CFI.

Formation of another type of neutron cnergy band (neutron valence band) in a PdH (D) crys-
tal originated from excited states of nentrons in Pd nuclei on the crystal lattice (lattice nuclei) is
formulated in this paper using data in nuclear physics and in solid state physics.

2. Neutron Band formed by Interaction between Neutrons through Interstitial Protons

The nuclear structure of isolated nuclei in the energy region up to several hundred MeV has been
thoroughly investigated in about nincty vears to accomplish its fundamental understanding in the
energy region up to several hundred MeVS?) after the discovery of the atomic nucleus in 1911. The
global features of the energy levels of nucleons and their distribution seem to be fairly well described
by the Fermi-gas model,® even if they are mainly confined to light nuclei, and a quantitative analysis
is plagued with difficulties in the description of the reaction mechanism. It is interesting, therefore, to
investigate excited levels with energies very close to the zero level; which corresponds to the neutron
level with a binding energy of zero in the nucleus 24X, or to the state where a neutron and the
separated nucleus gle remain still. {We use this cnergy standard in this paper unless otherwise
stated.) Therefore, it is interesting to have some phenomena which are directly related with the
highest excited levels of nucleons in medium and heavy nuclet.

It is a common knowledge in nuclear physics that average properties of the excitation spectrum
of nucleons in a nucleus arc given by the Fermi-gas model as a result of dominance of the particle
degrees of freedom over the number of collective modes.®!
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In the Fermi-gas model, nucleons in a lattice nucleus at a, is treated as independent particles and
their quantum states ¢ () (r —@;) arc specified by quantum numbers {r} = (n, £, m) omitting spin
parts for simplicity;®)

Yiny (7~ @) = Ypm(F — d;). 1)

The wave function of a ncutron in a nucleus 2X, however, extends far away from the nucleus when
the energy E of the state is less than but close to zero and then the wave function outsides the nucleus
is approximated by

iv':'rf,(?,m UT" (—[1) = Ciewn"ﬁiﬁA}}(’.m(()iv ¢i)a (2)

where 5 = (| E!) is a damping factor of the radial wave function depending on the energy but assumed
for simplicity to be independent of quantum numbers, and (6;, ¢;) are angles measured from the lattice
point a;. In the following treatment, we use the wave function (1) until we need the wave function
(2).
The result of the calculation of the total level density for the Fermi gas is given as;®
671 g w2 a
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where ¢ is the excitation energy measurcd in relation with the ground state and go is the one-particle
level density at the Fermi encrgy e representing the sum of the proton and neutron level densities:
3 A
g = gyler) = 3 (4)
EF
foracase Z = N = A/2.
The energy range where the above formula is applicable is determined by a relation

ij;- e <epdld (5)

where £5 < 37 McV for heavy nuclei. This relation gives an energy range of applicability 0.4 ~ 170
MeV for nuclei with mass numbers 4 ~ 100.

High density of nuclear levels at high excitation energies, amounts of the order 10° times higher than
that corresponding to single-particle motion, has been revealed by densely spaced, sharp resonance
in the slow neutron capture reactions in a nucleus with 4 ~ 100.9 The figure 105 will be increased
further by several orders when the energy of the slow neutron capture reactions goes down to ~ 1 eV,
In the following discussion, we will take this factor as 10° at its maximum suggested by experimental
data for Ag in the range of 2 to 8 McV?! considering later application to Pd isotopes in the energy
range up to 10 MeV.

3. Effective Potential for the Super-nuclear Interaction between Neutrons in Adjacent
Lattice Nuclei of Transition-Metal Hydrides and Deuterides

The nuclei of the transition-metal element on the lattice points (lattice muclei) have six hydrogen
isotope nuclei (protons or deuterons) as nearest neighbors at interstices half lattice constant 1.95 A
apart. The proton (deuteron) at an interstice is described as a three-dimensional harmonic oscillator
in its ground and lower excited states'®!!) and is sometimes described by proton (deuteron) Bloch
waves in its excited states.'® The wave function of a proton {deuteron) in a statc specified by quantum
numbers {p} = (n,, £, m) at an interstice b;, ©(p}(=b;) has finite probability density at nearby lattice
nuclei especially when it is in excited states.”® If we ignore mutual interaction of protons {deuterons)
in different interstices, the total proton (deuteron) wave function may be expressed as a product of
wave functions on the interstices as follows with {pa} = (0102, - pz);

By (Ri fa - By) = H@{p,}(éj—’;j)- (6)
J

The overlapping of the proton (deuteron) wave function wipy(8; —b;) on the interstice b; with a
nucleon (neutron) wave function U(ny{r—a;) of an adjacent lattice nucleus at @; results in the proton
(deuteron)-neutron interaction through the nuclear force.

The nuclear force is expressed by the gradient of a potential V{r~R;) whose form is taken as:!4)

Vil = B) = =", (7= Rl <b) (7)
= 0, (|7 - ﬁl > b) (Square well),
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where V) ~ 3.5 MeV 12

This interaction brings two nucleons (neutrons) in lattice nuclei on different lattice points in
coupling with each other which we named the super-nuclear interaction as explained in Introduction.
In the following investigation, we concentrate on neutrons in lattice nuclei than protons which are in
lower levels in the ground state duc to the general rule Z < N and need more energy for excitation
to levels around zero.

To investigate properties of the super-nuclear interaction between neutrons in different nuclei, we
use the tight-binding approximation for excited neutrons in lattice nuclel. In a periodic potential of
lattice nuclei, a neutron in an excited level of a lattice nucleus is described quantum mechanically as
a linear combination of states centered at each lattice nucleus with the same probability and its state
is expressed hy a Bloch function;'®

(’/]Hn}\’-’) = Z el(kd.)w{"}(f‘_ ai). (8)
1

Therefore, the total wave function of a system composed of a neutron Bloch wave and Z protons at
interstices is expressed as follows (neglecting spin parts of wave functions, for simplicity);

Uity iy B Koo Bz) = g0 (M@ gy (Br Ray - o), 9)

The description of neutrons by the Bloch functions becomes a good approximation when the band
width finally obtaincd is wide enough to make the neutrons maove freely in the crystal not disturbed
by perturbations causing aperiodicity in the periodic potential of the lattice nuclei. The origin of the
perturbation will be Jattice imperfections (caused by deviation from PAH (D) composition), thermal
oscillation of the lattice nuclei, impurity atoms, and so on.

The neutrons in excited states of lattice nuclei and occluded protons (deuterons) at interstices
could be treated independently because an exchange of the neutron and the proton results in fairly
high-energy states and does not occur with high probability. The total energy Ey idpa) of the system
with 4 neutron in a band state & and protons in states {ps} in this approximation is expressed as
follows in the second-order perturbation calculation taking the square-well potential (7) for the nuclear
potential:

Einrgpay = Blopar * Z exp(—i(ka; — K'di))vnp (i), (10)
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where p,(E) is the level density of excited states for a neutron, €y, ~ ¢y = €5, and E = E,y —
E(ny, summations over { and i are only over the nearest neighbor lattice points a; and ay of the
interstice b;, summations over {n',p'} exclude the term where the dencminator becomes zero, E({’;}} is
an energy of a neutron in an excited state 11, (r—a;} in a lattice nucleus at @, when protons are in
states {p, }, and £, is an energy of a proton in a state , (R; —b;) at an interstice b;. The neutron
cnergy F({p} can be approximated by the energy ol a neutron in a lattice nucleus interacting with
protons in a state p, an average of pi’s because E,| > |gp|. We ignore, however, p-dependence of
E(p hereafter in this work (E””} = ksl

{n
T() specify the neutron wave fiunctions ¢, (r—a;) to calculate matrix elements in the above

equation, we utilize knowledge abtained in the shell model caleulation. We use the Fermi-gas model
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with the nuclear harmonic oscillator potential. Then, the wave functions and energy eigenvalues
specified by quantum numbers (n,£,m) are written down as follows;!?!

Yt (7.6, 9 = Boelr} \’7:4‘\9 ®). (l"ll < (7 (15)

3
E{n} = Enf/n = (’L + - )hwn + AE(m (16)
where Aeyy, expresses the [ - s and other coupling energies taken symbolically into consideration to
distinguish energies of the states with the same n and different £, m, w, is the circular frequency of
the nuclear harmonic oscillator and Yy ,,(8, ¢) are the spherical harmonics.

A concrete expression of one of the matrix elements (14) for PdH is expressed using wave functions
of the occluded protons at interstices and excited neutrons in a lattice nucleus as follows;

< 2f7/,’3 Id ?]H’l:‘;]}g/@?" L_] >
—//(I'FdﬁjRSB(Zi)}é.O(air(bi)fld(zj)yl.()(@jaQj)

X V(5 = By Rs1 (2:)Y10(05, 6:)€25(Z;) Yo,0(0;,@;), (17)
o= 20,7 —adl' Z; = 20p|R; - b,

I

where a; is a nearest neighbor lattice site of the interstice b;, K in ay, is K y given in the reference,!®
and (8;, ¢;) and (©;, ®;) are angles measured from origins at a; and bj, respectively.

Because the triton is much more tightly bound than the deuteron, the potential Vﬂﬁ.d) (r—R) for
a deuteron in PdD system should be deeper than Vg, (r— R) in (17). For a qualitative calculation of
the matrix element (17) with l"ﬁ'j,’”(r - R}, we may use a following form for the potnetial;

Vit (P - By = V(7 - R), (18)

where £ is a numerical factor of an order of the ratio of binding energies of triton (8.5 MeV) and
deuteron {2.2 MeV) reduced to per a nucleon; £~ (8.5+ 3)/(2.2+ 2) ~ 2.6.

The order of magnitude of the eflective 1,»ot.cnt1a1 energy u,,(11’j) for PdH, however, is roughly
estimated as follows: the proton wave function ¢,(R) is slowly varying in the range of the nuclear
force, and the nuclear wave function wy,,,(r) is approximated by a delta-function. Then, an order of
magnitude of the matrix elements < np;j|V'|n‘p’;ij > is given as

| <np;ij|Vin'p'iig > | ~ /w;u’)ndf< V> ¢ropf (19)

¢

xS s ) o (0) P o (0)

32x 107 eV, (20)

where {2 is the volume of the Pd nucleus, < V7 > =~ |ij )~ 35 MeV (Eq.(7)), wp(I) is taken as
() up(y)ua(z) and rx = 1.95 A is the position of the lattice nucleus measured from the interstice.

Putting this value (20} into Eq.(11), we can estimate the effective potential energy vn,(ii'y) as a
function of the principal value of the integration appeared in that equation, assuming the insensitive-
ness of the matrix clements to the energy:

Vaplii'f) ~ 1 x 10777 (eV3)I, (21)
o
I = P/ B
E

We can, then, estimate the approximate value of the integral [, taking following values p, (E)
~ 10 keV~! dc ~ 1072 keV, and As ~ 1 keV on the assumption that single particle energy level
difference is ~ 1 keV and the level density increases to 10% times larger than that of single particle
motion:

Pnie)
ds

I~ Ac = 10" evTh (22)
Thus, an order of magnitude of vy, (¢i'j) in PdH becomes

'vrap(.“'j,) ~ 1x ]_ﬂ_ (e\') (23)



The valuc of v,,{ii"5} in PdD may be taken as one order of magnitude larger than this value if we
consider the factor £=2.6 (£* = 6.8) and wa(zy) instead of uz(xy) in Eq.(20).

4. Tight-Binding Neutron Bands in Transition-Metal Hydrides and Deuterides To show
crystal-structure dependence of the hand width, we can use a simplification of the super-nuclear inter-
action between adjacent nuclei assuming that it depends only on the magnitude of vectors (a;—a;)
= a; (taking @y~ 0). We can, then, rewrite the neutron parts of expression (12) as follows;

E = E,-0o- W,Zewi(l;fi.‘), (24)
i

= wuypltif), (25)

- = 'Unp(ii’j)' (26)

Using the value of wv,p(#'j] given in {23), we obtain a semi-quantitative estimation of the valence
band width A from Eq.(24):

A = v, (i) ~ 107 (meV) (PdH). @7

Thus, it is concluded that the matrix clements (17) should be 10° times larger than the values
estimated in (23) to substantially keep the neutron hands below zero which was determined to form
in solids with a width A > 25 meV that is not destroyed by the thermal motion of ions at room
temperature. This is realized only when the neutron wave function (1) extends out as the wave
function (2) from a lattice nucleus to regions where a wave function of the occluded proton has a
larger value by a factor 10° than that at the lattice nuclei.

The main term of the proton wave function relevant to this behavior is the exponential factor

-4a%2% and it gives this value 10% at 2o ~ 1.43 A from an interstice (or 0.52 4 from a lattice point).
If this behavior is coupled with an extension of the neutron wave function (2), then the neutron-proton
interaction can contribute to formation of a neutron valence band with a width of A > 25 meV.

We consider here an s-type wave function for the state, for simplicity:

'(,‘3’"71(.'1'_5{:) = Cie_m’rfa'k (28)

To extend the neutron wave function to the range of A = 5.2 x 1079 cm referred above, the decay
constant of the state n(|E]) >~ 1/A should be 1.9 x 10® cm™! and this corresponds to an energy E:

h? )
IE| = —(E])* = 74 (eV) (29)

2,

below zcro, where mm,, ~ 1.67 x 10" ** g is the neutron mass. In other words, the excited states of
isolated lattice nuclei with energics down to 7 eV from zero can participate to the neutron valence
band, or the neutron bands below zero, in transition-metal hydrides considered above.

If the state has less energy, i.e. far from zero, and the extension of the state is less than 5.2 x
1079 ¢m, the band state fails to be substantially formed even in PdH and neutrons are essentially in
single particle states in isolated lattice nuclel.

The width A of the neutron band (24) is ~ 24y = 24u,,(ii'j). Putting the numerical values
obtained in (23) for PdH and one for ’dD by multiplying a factor of 10 to that of PdH as discussed
on the end of Section 3, we obtain

A = 107% (meV) (PdH), (30)
A = 1077 (meV) (PdD). (31)

Thus, these neutron states pulled down to just below zero from free states above zero by attractive
interaction with lattice nuclei or excited states of lattice nuclei close to zero energy can be candidates of
those states participating the neutron valence hbauds below zero in transition-metal hydrides considered
above.

5. Discussion

First of all, it should be kept in mind following facts about anomalons nuclear reactions in solids.
The cold fusion phenomenon (CEP) is most frequently observed in transition-metal deuterides and
hydrides, especially in TiD (H), NiH (D). and PdD (H). Furthcermore, these transition-metal nuclei
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have a common characteristic; existence of excited nentron levels near zero in an isolated nucleus,
Usyy in Ti, 3s;y5 in Ni, and 2f7/, in Pd.® Therefore, the investigations on PdH (D) given in the
preceding sections are straightforﬁardiy applicable to such materials as TiD (H), NiH (D), and others
with necessary modifications to meet characteristics of each material.

When there are many neutrons in a neutron band formed by characteristics of transition-metal
hydrides and deuterides, there appear interesting featurcs of neutron’s behavior at boundaries that
reflect neutrons back into the crystal; "local coherence” of neutron Bloch waves, and therefore, high
densities of neutrons appear there®). Iligh-density neutrons in the boundary region® or in neutron
star matters'®) induce formation of "neutron drops” {or clusters of many neutrons and a few protons)
in a thin nentron background. These nentron drops in a thin neutron background interact with nuclei
to produce new nuclear effects in the boundary region.

The ditference of A of PdH and PdD given in Fgs.(30) and (31) tells us the latter is advantageous
to realize CFP if other conditions are the same. This result seems in accordenace with experience
obtained in a decade of CF research.

Finally, we would like to notice a new point of view; it should be considered that various events
in CFP are results of measurements using various probes to look into physics of a complex system
composed of transition metals and hydrogen isotopes occluded in them in ambient radiations. If we do
not confine our investigation in a narrow scheme presupposed by a biased viewpoint, new perspective
can be developed on the basis suggested by experinental facts, even if they seem too complicated at
first sight to be treated consistently
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