CFRL News No. 61 (2005. 5. 20)
Cold Fusion Research Laboratory (Japan) Dr. Hideo Kozima, Director
E-mail address; cf-lab.kozima@nifty.com
Websites; http://www.geocities.jp/hjrfq930/
Newsのバックナンバーその他は上記ウェブサイトでご覧になれます
常温核融合現象CFP(The Cold Fusion Phenomenon) は、「背景放射線に曝された、高密度の水素同位体(H and/or D)を含む固体中で起こる、核反応とそれに付随した事象」を現す言葉です。
CFRL News No.61をお送りします。この号では、次の記事を掲載しました。
1.
“The
Cold Fusion Phenomenon and a Complexity (1) – Complexity in the Cold Fusion
Phenomenon –“ Proc. JCF6 (April 27 – 28, 2005, Meguro, Tokyo, Japan) (掲載予定)
2.
H.
Kozima, “Cold Fusion Phenomenon” Rep. Fac. Science, Shizuoka Univ. 39,
21-90 (2005) が出版されました。
3.
JCF6
(April 27 – 28, 2005, Meguro, Tokyo, Japan) が開催されました。
1. 論文 “The Cold Fusion Phenomenon and a
Complexity (1) – Complexity in the Cold Fusion Phenomenon –“ Proc. JCF6
(April 27 – 28, 2005, Meguro, Tokyo, Japan) 掲載予定。
4月末に東工大で行われたJCF6において、表記の論文(講演番号JCF6-10)を発表しました。この論文では、ICCF10とICCF11で発表した二つの法則、核変換における「安定性効果」と過剰熱発生の「逆ベキ法則」の発見をもとにして、これまでに得られている種々の経験法則を加えて常温核融合現象を考えなおしました。複雑系における科学で知られているカオス、自己組織化、複雑性が顔をのぞかせているのが常温核融合現象ではないのか、という観点の有効性を提起したものです。論文を常温核融合研究所(CFRL)のウェブサイトに掲示しました;http://www.geocities.jp/hjrfq930/News/NewsPrefaces/JCF6paper.htm
2. H. Kozima, “Cold Fusion Phenomenon” Rep.
Fac. Science, Shizuoka Univ. 39, 21 - 90 (2005) が出版されました。
これまでの実験データとわれわれの理論的研究成果をまとめて、発見以来16年の常温核融合現象の研究の全体像を提示しました。
JCF6で発表した論文にも引用した表
Matrix Substances |
Transition metals (Ti, Ni, Mo, Pd, Pt, etc.), Proton Conductors
(SrCeO3, REBa2Cu3O7, AlLaO3),
Ferroelectrics (KD2PO4, TGS, etc.), Others (C, NaxWO3,
Stainless Steel, etc.) |
Agents |
10n, 11H,
21H, (168O), 63Li,
105B, 2311Na, 3919K,
8537Rb, 8737Rb, SO42–,
etc. |
Direct Evidences |
Neutron energy spectrum n(ε), Gamma rays γ(ε), Spatial
distribution of NT products (A’Z’X(r)), Decay time shortening, Fission
barrier decrease |
Indirect Evidences |
Excess Heat Q, Number of neutrons Nn, Number
of tritons Nt, Number of 42He NHe4,
Number of NT products NNT (for NTD, NTF,
NTA, and NTT), X-ray spectra X(ε) |
が示すように、常温核融合現象は多様な場で起る多様な事象を含んでいて、個々の事象はそれぞれ異なる現象と考えることも可能でしょう。しかし、われわれは、それらの事象が一つの現象の多様な面であるという立場で解析を進めて来て、全体を統一的に説明する物理学を朧に認められる立場に到達できたと思っています。
今のところこの長い論文をPDFファイルにする予定はありませんが、大学図書館などにこの雑誌Reports of Faculty of Science, Shizuoka Universityが収蔵されていると思いますので、関心のある方はご覧ください。摘要を下に引用します。
Abstract
First of all, it should be mentioned that the term "Cold Fusion Phenomenon" (CFP) includes nuclear reactions and accompanying events occurring in solids with high densities of hydrogen isotopes (H and/or D) in ambient radiation.
In 1989,
Fleischmann and Pons published the first modern paper on this problem. In an
electrolytic system, Pd/D2O + LiOD/Pt, they measured excess heat,
tritium and neutrons. They expected to conclude from the experimental data that
the observed data were resulted from d-d fusion reactions in solids, the
Fleischmann's hypothesis, are generally considered improbable to occur in
solids. Succeeding investigations revealed, however, that such curious events
not known before are also observed in systems containing only protium without
deuterium. Furthermore, it became clear that there are no positive results
without background thermal neutrons thus showing the essential role of thermal
neutrons in CFP. More puzzling factors in CFP are poor reproducibility and the
sporadic occurrence of events. In addition to these qualitative characteristics
discovered, there is an enormous amount of data of various kinds of events
occurring in samples localized at surfaces/boundaries showing facts peculiar to
CFP, which are inexplicable without invoking nuclear reactions in materials
used in the CF experiments (CF materials).
A
phenomenological approach using a model (TNCF model) was tried as an orthodox
procedure to attack complex problems with unknown parameters difficult to
explain theoretically using known fundamental equations. We were able to give a
consistent explanation of various experimental data sets obtained in both
protium and deuterium systems and in proton conductors with the TNCF model.
Puzzles of CFP pointed out above were explained indirectly from unified point
of view based on experimental facts. The key postulate of the phenomenological
TNCF model is the existence of thermal neutrons in fcc transition-metal
hydrides/deuterides and proton conductors, where most positive data have been
obtained. The TNCF model with an adjustable parameter, nn,
has been successful in explaining characteristics of CFP and many quantitative
relations between CF products. Also, a progress of the TNCF model has been made
to the neutron drop model to explain nuclear transmutations where a
multi-neutron absorption by a nuclide is needed.
In an attempt to explain quantum mechanically the several postulates assumed in the successful models, it has been shown that there are previously unknown, important new fields in nuclear physics and solid-state physics. These fields are closely related with the CFP and are not explained by conventional knowledge of physics. The excited state of neutrons around the separation level (zero energy) in a nucleus is a concept not recognized to have any importance in nuclear physics. The quantum mechanical state of hydrogen isotopes in fcc transition-metal hydrides and deuterides is another concept not recognized to have an important connection with nuclear physics. Surface layers on the cathodes in electrolytic systems and boundary layers in compound CF materials play important role in realization of CFP. These problems especially in electrolytic systems are investigated quantum mechanically and complexity in CFP is pointed out in this paper.
3. JCF6 (April 27 – 28, 2005, Meguro,
Tokyo, Japan) が成功裡に開かれました。
表記学会が、約20編の研究発表、約40名の参加者(延べ)を集めて開かれました。論文のアブストラクトを含む詳細は、JCF(日本CF研究会)のホームページに掲示されています。http://wwwcf.elc.iwate-u.ac.jp/jcf/
実験関係で興味のあった研究の一つは、Pd陰極、Pt陽極、硝酸軽水溶液での電解でBaやRbなど数種の元素を検出した岩手大学グループの実験です(JCF6-9)。核変換で生じた元素は、電極表面と電解液中とに分布していて、核反応が電極表面で起ることを再確認させる結果です。