Facts in the Cold Fusion Phenomenon (CFP)

The cold fusion phenomenon (CFP) has been discovered in 1989 and developed successively in these 25 years despite the difficulties to understand the facts revealed by experimental data such as qualitative reproducibility and nuclear reactions in near-room temperature environment. So, there are dispute concerning what are the facts in the CFP; some denies them for the lack of reasonable explanations and other accept them believing in the techniques applied to the measurement.

Our point of view to this problem is of course the latter. We have given a consistent explanation of the whole data obtained by reliable experiments in our papers and books. The most extensive presentations of our point of view have been given in our two books [Kozima 1998, 2006] and the recent up-to-date ones have been given in our several papers [Kozima 2015a, 2015b].

In this paper, we give the facts included in the outline of our point of view on this problem according to our explanations given in these books and papers.

1. The Field where occur the events of the Cold Fusion Phenomenon {Kozima 1998 (Secs. 6 – 10), 2006 (Chapter 2, Facts of the CFP)}

Table 1. System and Obtained Evidence of CFP. Mother solids, agents, experimental methods, direct and indirect evidence, cumulative and dissipative observables of the cold fusion phenomenon. Q and NT express excess heat and the nuclear transmutation, respectively. Direct evidence of nuclear reactions in CFP are Energy (ε) and position (*r*) dependencies of reaction products, decrease of decay constants of radiative nuclides, decrease of fission threshold energy of compound nuclei. [Kozima 2006 (Table 2.1 supplemented by recent papers)]

Mother solids	Pd, Ti, Ni, KCl + LiCl, ReBa ₂ Cu ₃ O ₇ , Na _x WO ₃ , KD ₂ PO ₄ ,						
	TGS, SrCe _a Y _b NB _c O _d , XLPE, C (graphite)						
Agents	<i>n</i> , <i>d</i> , <i>p</i> , ${}^{6}_{3}$ Li, ${}^{10}_{3}$ B, ${}^{39}_{19}$ K, ${}^{85}_{37}$ Rb, ${}^{87}_{37}$ Rb, (ion beam)						
Experimental	Electrolysis, Gas discharge, gas contact, (ion beam irradiation)						
methods							
Direct	Gamma ray spectrum γ (ε), neutron energy spectrum $n(\varepsilon)$,						
Evidences	Space distribution of NT products NT(<i>r</i>),						
	decrease of decay constants, lowering of fission threshold						
	energy						

Indirect	Excess energy Q , number of neutrons N_n , amount of tritium
Evidences	atom $N_{\rm t}$, helium-4 atom $N_{\rm He4}$, NT (NT _D , NT _F , NT _A), X-ray
	spectrum X(ε)
Cumulative	$NT(\mathbf{r})$, amount of tritium atom N_t , helium-4 N_{He4} ,
Observables	
Dissipative	Excess energy Q , neutron energy spectrum $n(\varepsilon)$, number of
Observables	neutrons N_{n} , Gamma ray spectrum γ (ϵ), X-ray spectrum X(ϵ),

2. Experimental Data Sets in Deuterium and Protium Systems

Table 2.1 Pd/D(H)/Li System. Neutron density n_n and relations between the numbers N_x of event X obtained by theoretical analysis of experimental data on the TNCF model $(N_Q \equiv Q \text{ (MeV)/5 (MeV)})$ [Kozima 2006, Table 2.2]. Typical value of the surface vs. volume ratio *S* /*V* (cm⁻¹) of the sample is tabulated, also. As we see here, there are several data sets of the CFP in Pd/H/Li(S) systems even if the combination Pd/D/Li is overwhelmingly preferable for the phenomenon. [Kozima 1998 (Table 11.2)]

Authors	System	S/V	Measured	nn	Other Results
		cm ⁻¹	Quantities	cm ⁻³	(Remarks)
Fleischmann	Pd/D/Li	6	Q, t, n	~109	$(Q=10 \mathrm{W/cm^3})$
et al.1)		~ 40	$N_t/N_n \sim 4 \times 10^7$		$N_t/N_n \sim 10^{\circ}$
			$N_Q/N_t \sim 0.25$		$N_Q/N_t = 1.0$
Morrey	Pd/D/Li	20	Q,"He	4.8 ×10°	$N_Q/N_{He} \sim 5.4$ (
$et al.^{1-4}$			^a He in $\ell \leq 25 \mu m$		If 3% *He in Pd)
Roulette ^{1⁽¹⁾})	Pd/D/Li	63	Q	~1012	
Storms ⁴)	Pd/D/Li	9	$t(1.8\times10^2\mathrm{Bq/m\ell})$	2.2×10 ⁷	$(\tau=250h)$
Storms ⁴)	Pd/D/Li	22	$Q (Q_{max}=7W)$	5.5×10^{10}	$(\tau=120h)$
Takahashi	Pd/D/Li	2.7	t, n	3×10 ⁵	$N_t/N_n \sim$
et al. ^{5')}			$N_t/N_n \sim 6.7 \times 10^4$		5.3×10^{5}
Miles	Pd/D/Li	5	Q, ⁴ He	~10 ¹⁰	
et al. ^{18')}			$(N_Q/N_{He}=1\sim10)$		$N_Q/N_{He} \sim 5$
Okamoto	Pd/D/Li	23	Q, NT_D	~10 ¹⁰	$N_Q/N_{NT} \sim 1.4$
et al. ^{12')}			$\ell_0 \sim 1 \ \mu m$		$(^{27}\text{Al}\rightarrow^{28}\text{Si})$
Oya ¹²⁻⁵⁾	Pd/D/Li	41	Q, γ spectrum	3.0×10 ⁹	(with ²⁵² Cf)
Arata.	Pd/D/Li	7.5	Q , ⁴ He $(10^{20} \sim 10^{21})$	~10 ¹²	(Assume t
et al. ¹⁴⁾		×10 ⁴	cm ⁻³)		channeling
			$N_Q/N_{He} \sim 6$		in Pd wall)
McKubre ³⁾	Pd/D/Li	125	Q (& Formula)	~10 ¹⁰	Qualit.explan.
Passell ^{3''')}	Pd/D/Li	400	NT _D	1.1×10 ⁹	$N_{NT}/N_Q=2$
Cravens ^{24"})	Pd/H/Li	4000	$Q (Q_{out}/Q_{in}=3.8)$	8.5×10 ⁹	(If PdD exists)
Bockris ⁴³⁾	Pd/D/Li	5.3	$t,^{4}$ He; $N_{t}/N_{He} \sim 240$	3.2×10^{6}	$N_t/N_{He} \sim 8$
Lipson ¹⁵⁻⁴)	Pd/D/Na	200	$\gamma \ (E_{\gamma}=6.25 \mathrm{MeV})$	4×10^5	If effic. $=1\%$
Will ⁴⁵)	Pd/D ₂ SO ₄	21	$t(1.8 \times 10^5 / \text{cm}^2 \text{s})$	3.5×10^{7}	(If $\ell_0 \sim 10 \mu m$)
Cellucci	Pd/D/Li	40	$Q, {}^{4}\mathrm{He}$	2.2×10^{9}	(IfQ=5W)
et al. ^{51'''})			$N_Q/N_{He}=1\sim5$		$N_Q/N_{He}=1$
Celani ^{32''')}	Pd/D/Li	400	$Q (Q_{max} = 7 \text{ W})$	1.0×10 ¹²	(If200%output)
Ota ⁵³)	Pd/D/Li	10	Q(113%)	3.5×10^{10}	$(\tau = 220 h)$
Gozzi ^{51"})	Pd/D/Li	14	$Q, t, {}^{4}\mathrm{He}$	~10 ¹¹	$(\tau \sim 10^3 h)$
Bush ^{27'})	Ag/PdD/Li	2000	$Q(Q_{max}=6W)$	1.1×10 ⁹	$(\tau = 54d, Film)$
Mizuno	Pd/D/Li	3.4	Q, NT_D	2.6×10 ⁸	τ =30d,Pd
26-4)	(If Cr in Pd)		$\ell \leq 2 \ \mu m$)		$1 \text{cm}\phi \times 10 \text{cm}$
Iwamura ¹⁷⁾	PdD _x	20	n (400/s), t	3.9×10^8	$4.4 \times 10^{6} t/s$
Itoh ^{17'})	PdD _z	13.3	n (22/m), t	8.7×10^{7}	$7.3 \times 10^{10} t/s$
Itoh ^{17")}	PdD _x	13.3	$n (2.1 \times 10^3 / s)$	3.9×10^8	
Iwamura	PdD _x	20	Q (4 W)	3.3×10^{10}	$(NT_F?$
17''')			NT _F (Ti, Cr etc.)		unexplained)
Miley ⁶⁵	Pd/H/Li	150	$NT_F(Ni,Zn,\cdots)$	4.5×10^{12}	
Dash ⁵⁹	Pd/D,H ₂ SO ₄	57	Q, NT_D	$\sim 10^{12}$	Pt→Au
Kozima ²⁰³⁾	Pd/D,H/Li	200	$n (2.5 \times 10^{-4}/s)$	2.5×10^{2}	Effic. =0.44%

Table 2.2. Ni/H/K System and others. Neutron density n_n and relations between the numbers N_x of event X obtained theoretical analysis of experimental data on TNCF model ($N_Q \equiv Q \text{ (MeV)}/5 \text{ (MeV)}$) [Kozima 2006, Table 2.3]. Typical value of the surface vs. volume ratio $S / V \text{ (cm}^{-1})$ of the sample is tabulated, also. As we see here, there are several data sets of the CFP in Ni/D/K systems even if the combination Ni/H/K is overwhelmingly preferable for the phenomenon. [Kozima 1998 (Table 11.3)]

Authors	System	S/V	Measured	nn	Other Results
		cm^{-1}	Quantities	cm ⁻³	(Remarks)
Jones ²⁾	Ti/D/Li	8.1	n (2.45 MeV)	3.1×10^{11}	
Mills ²⁵)	Ni/H/K	160	Q (0.13 W)	3.4×10^{10}	
Bush ^{27')}	Ni/H/K	~160	$NT_D(Ca)$	5.3×10^{10}	$N_O/N_{NT} \sim 3.5$
	Ni/H/Na	~160	$NT_D(Mg)$	5.3×10^{11}	$({}^{40}K\tau=0)$
Bush ^{27''})	Ni/H/Rb	~104	$NT_D(Sr)$	1.6×10^{7}	$N_O/N_{NT} \sim 3$
Savva-	Pd/D_2	100	$NT_D(Ag)$	9×10 ¹⁰	
timova ³⁴ ")					
Alekseev ^{44')}	Mo/D_2	4.1	$t (\sim 10^7/s)$	1.8×10^{7}	(If MoD)
Romoda-	TiC/D	4.1	$t (\sim 10^6/s)$	~106	(D/Ti~
nov ⁴⁴ ''')					0.5assumed)
Reifensch-	TiT0.0035	7×10^5	β decay	1.1×10^{9}	$(T=0\sim 450^{\circ}C)$
weiler ^{38')}			reduction		
Dufour ⁷⁾	$Pd,SS/D_2$	48	Q, t, n	9.2×10 ¹¹	(D(H)/Pd~1
	Pd,SS/H ₂			4.0×10^{9}	is assumed)
Claytor ⁹⁾	Pd/D_2	400	t (12.5 nCi/h)	1.6×10^{13}	(If D/Pd~0.5)
Srinivasan ¹⁶)	Ti/D ₂	1500	$t (t/d \sim 10^{-5})$	1.9×10^{8}	(Aged plate)
De Ninno ^{6')}	Ti/D ₂	440	n,t	1.2×10^{6}	(D/Ti=1,1w)
Focardi ²³⁾	Ni/H ₂	8.2	Q	3.0×10^{12}	$(If N_p = 10^{21})$
Oriani ⁵²⁾	$SrCeO_3/D_2$	22	$Q \sim 0.7 W$	4.0×10^{10}	V=0.31cm ³
Notoya ^{35''})	Ni/D,H/K	3.4	Q (0.9 W),		(If 1/2 t)
		×10 ⁴	t	2.4×10^{13}	is in liquid)
Notoya ³⁵⁻⁴)	Ni/D,H/K	same	$NT_D(Ca)$	1.4×10^{9}	(Sintered Ni)
Yamada ⁵⁴⁾	Pd/D_2	185	n , $NT_D(C)$	2.0×10^{12}	
Cuevas ⁵⁵⁾	TiD _{1.5}	134	n (102 n /s)	5.4×10^{11}	
Niedra ⁵⁶⁾	Ni/H/K	80	Q (11.4 W)	1.4×10^{9}	$5 \text{km} \times 0.5 \text{mm} \phi$
Ohmori ^{22")}	Au/H/K	200	$Q, \operatorname{NT}_{F}(\operatorname{Fe})$	~10 ¹¹	(Au plate)
Li ⁵⁷⁾	Pd/D_2	185	Q	1.6×10^{12}	(Pd wire)
$Qiao^{57'}$	Pd/H ₂	185	$NT_F(Zn)$	3.8×10^{10}	(40%NTin 1y)
Bressani ^{58')}	Ti/D_2	$\leq 10^{3}$?	$n(\varepsilon)$	$10^5 - 10^6$	(Ti shaving)
Miley ^{65')}	Ni/H/Li	50	$NT_D(Fe, Cr, \cdots)$	1.7×10^{12}	

References

[Kozima 1998] H. Kozima, *Discovery of the Cold Fusion Phenomenon* (Ohtake Shuppan Inc., 1998), ISBN 4-87186-044-2.

[Kozima 2006] H. Kozima, *The Science of the Cold Fusion Phenomenon*, Elsevier Science, 2006. ISBN-10: 0-08-045110-1.

[Kozima 2014a] H. Kozima, "The Cold Fusion Phenomenon - What is It?" Proc.

JCF14: **14-16**, pp. 203 – 230 (2014). ISSN 2187-2260. And also Reports of CFRL (Cold Fusion Research Laboratory) 14-4, 1 – 29 (March, 2014);

http://www.geocities.jp/hjrfq930/Papers/paperr/paperr.html

[Kozima 2014b] H. Kozima and K. Kaki, "Atomic Nucleus and Neutron — Nuclear Physics Revisited with the Viewpoint of the Cold Fusion Phenomenon" *Proc. JCF14*: **14-5**, pp. 47 - 76 (2014). ISSN 2187-2260. And also Reports of CFRL (Cold Fusion Research Laboratory) 14-1, 1 - 34 (March, 2014);

http://www.geocities.jp/hjrfq930/Papers/paperr/paperr.html