3 S	Science of the Cold Fusion Phenomenon	67	
3.1	Potency of a model—Examples in modern physics	68	Epi
	3.1.1 Usefulness of models in science	69	•
3.2	The TNCF model—A phenomenological approach	69	1q £
	3.2.1 Premises of the TNCF model	70	
	3.2.2 Nuclear reactions relevant to the TNCF model	72	£2.
	3.2.3 Number of reactions relevant to observables	75	4,3.
3.3	Explanation of the CFP by the TNCF model	76	
	3.3.1 Relations between observed values of physical quantities	76	
	3.3.2 Absolute value of adjustable parameter $n_{\rm p}$	77	4 p j
	3.3.3 Nuclear transmutation related to stability effect	78	F 1
	3.3.4 Generation of Helium-4 and excess heat	78	Б1.
	3.3.5 Explanation of experimental data sets where several observables		E 2.
	were measured	81	53.
	3.3.6 Neutron energy spectrum	82	
	3.3.7 Other theoretical trials to explain events in the CFP	83	Арр
3.4	Nuclear reactions in free space and in solids	84	r r
	3.4.1 Nuclear reactions in free space	84	• •
	3.4.2 Effects of free electrons in metals	85	- 2
	3.4.3 Effects of lattice oscillation	87	:3:
	3.4.4 Effects of electromagnetic fields in solids	88	· <u>-</u>

Contents

ix

	3.4.5	Effects of ion beam and high-voltage discharge	89
	3.4.6	Trials to verify the Fleischmann's hypothesis	89
3.5	Quant	um states of neutrons and properties of lattice nuclei	90
	3.5.1	Neutrons in free space	90
	3.5.2	Neutrons in solids	91
	3.5.3	Neutrons in nucleus	95
	3.5.4	Energetics of lattice nuclei related to the CFP	98
3.6	Hydrogen isotopes in transition metals		
	3.6.1	Hydrogen isotopes in fcc, hcp, and bcc transition metals	100 100
	3.6.2	Excited states of a proton (deuteron) in CF materials (fcc and hcp	
		transition-metal hydrides (deuterides))	101
3.7	CF-m	atter and neutron drop model	102
	3.7.1	Neutron–proton interaction in solids	102
	3.7.2	Super-nuclear interaction between neutrons in different lattice	
		nuclei and neutron valence band	103
	3.7.3	Formation of CF-matter including neutron drops	106
	3.7.4	Energetics of neutron drop	106
	3.7.5	The CF-matter—neutron drops in thin neutron gas formed in solids	108
	3.7.6	The neutron drop model of the CFP	109
	3.7.7	Experimental data explained by the neutron drop model	109
3.8	The C	FP as a science of complexity revealed by the stability effect and the	
	inverse-power law		
	3.8.1	Conditions for CF-matter formation	110 111
	3.8.2	Conditions for CF-matter destruction	112
	3.8.3	Problem of the reproducibility	113
	3.8.4	Applicability of the CFP	113